
ECE 558 Arpad Voros

1 Problem 1

Print out and colour the matrix pictureMe.png. A fun exercise.

Figure 1: Coloured pictureMe.png

1

ECE 558 Arpad Voros

I used 4 different grade graphite pencils to colour the image. Included uncoloured squares
(white) this made me split up the interval [0, 255] into 5 linearly spaced sections, each corre-
sponding to a white or the 4 shades of graphite.

I realised that most of the numbers were low, which correspond to darker pixels. Since I
wanted to colour less, I corresponded high values with black and low values with white, and
then inverted the final image (as you can see in Figure 1).

2 Problem 2

2. (a) Read and show the image, and then capture the screenshot of the window show-
ing the image. Save the captured screenshot as [your unityid] screenshot.png (e.g.,
twu19 screenshot.png)

Using the Python Image Library (PIL), I read in the image from its directory and
displayed it using matplotlib.pyplot.imshow(). I used PIL instead of OpenCV
or matplotlib to read in the file because OpenCV was not in RGB order and
matplotlib was not in uint8 format (∈ [0, 255]), whereas PIL did both without
me having to reorder anything

Figure 2: Screenshot of image being displayed

2

ECE 558 Arpad Voros

(b) i. Find the digit signature of your unity id. First, convert each non-digit character
in your unity id to ASCII value (e.g., ‘twu19’ corresponds to 116, 119, 117, 19).

My Unity ID is aavoros, therefore it corresponds with ASCII numbers

aavoros = [97, 97, 118, 111, 114, 111, 115]

Regardless of having no number within my Unity ID, the program will still
properly convert all characters to this ’digital signature’ as given in the problem
statement.

ii. Second, count the number of occurrence of each of the digit number in each color
channel of the image (the number of occurrence could be zero, but definitely less
than the total number of pixels).

The number of instances is given in Table 1 below. There is a redundancy in
count for the characters a and o due to being duplicated.

Character ASCII # in R # in G # in B
a 97 3063 3472 2807
v 118 2506 3035 1910
o 111 2662 3149 2202
r 114 2639 3080 2057
s 115 2534 3170 2096

Table 1: Pixel counts for unique aavoros ASCII characters in wolves.png

iii. Third, change to 255 the pixel values of the 5 by 5 sub-image (if valid) cen-
tered at each occurrence and then show the result image. After you changed
all the occurrence, save the result image as [your unityid] signature.png (e.g.,
twu19 signature.png)

Iterating through each channel, row, column, and ASCII value to change the
value of a 5 × 5 box to 255 is susceptible to overwriting potential pixels which
equal our ASCII values. Meaning, if there pixels with our ASCII values within
2-4 pixels of one another and in the same channel, whichever ASCII value is
checked first will overwrite the other ASCII value to 255. This results in not
every ASCII pixel their 5 × 5 square. A way around this would be to create a
map of every pixel position where an ASCII value exists, and then proceed to
colour a copy of the image w.r.t. the map, rather than colouring the image w.r.t.
itself. However, I have been informed that w.r.t. grading, the order does not
matter and overwriting is allowed. Therefore I have simply kept the old version
of my program. The order of checking pixel values to colour pixel sub-images
hierarchically follows the following

1. Loop through an ordered list of each ASCII value of all unique characters

2. Loop through each RGB channel

3. Loop through each row

4. Loop through each column

5. Check if coloured & if ASCII value equals pixel value. If so, colour the 5× 5
box to 255

3

ECE 558 Arpad Voros

Here is the final digital signature for aavoros

Figure 3: ’Digital Signature’ for my Unity ID: aavoros

Below is the listing for hw1.py. To summarize:

- PIL is used to read in the wolves.png image and is converted to a numpy array

- A character array holds a UnityID. This variable is fed through an algorithm which
extracts the ASCII values for characters, and the integers remain

- All instances of the ASCII values within the wolves.png using binary operations

- The image in copied to output the Digital Signature. A mask of already altered
values is created to check pixels faster. Each pixel in the (row, column, channel)
position is compared to each ASCII value. If they equal, then the 5 × 5 box is
recoloured and the mask is appropriately updated.

import matplotlib.pyplot as plt

import numpy as np

from PIL import Image

function to find bounds while painting. considers boundary conditions

can change boundary size , but default is 5 (as said in hw1)

def get_bounds(r, c, num_r , num_c , box_l = 5):

0 based indexing , this is max row/col value

num_r -= 1

num_c -= 1

init min/max values

r_floor = 0

c_floor = 0

r_ceil = num_r

c_ceil = num_c

if not box_l % 2:

want box length to be odd , so the pixel value at r/c is perfectly in

the

center of the square

raise ValueError(’box length must be odd: box_l = %d’ % (box_l))

else:

delta = int((box_l - 1) / 2)

if r + delta < r_ceil:

r_ceil = r + delta

if r - delta > r_floor:

4

ECE 558 Arpad Voros

r_floor = r - delta

if c + delta < c_ceil:

c_ceil = c + delta

if c - delta > c_floor:

c_floor = c - delta

return np.array(range(r_floor , r_ceil)), np.array(range(c_floor , c_ceil))

get the wolf image

folder_dir = ’C:/Users/Arpad/Documents/Academic/NCSU/E. NCSU Grad Sem 1/ECE 558/

HW01/’

img_dir = folder_dir + ’wolves.png’

display the wolf image

img = np.array(Image.open(img_dir))

plt.imshow(img)

plt.show()

image characteristics

img_shape = np.shape(img)

num_r = img_shape[0]

num_c = img_shape[1]

unity id , used in calculating the ’digital signature ’

my_uid = ’aavoros ’

get the ASCII numbers of the unity id

ascii_uid = []

id_len = len(my_uid)

id_idx = 0

while id_idx < id_len:

chr = my_uid[id_idx]

if chr.isnumeric ():

offset = 1

while my_uid[id_idx:id_idx + offset].isnumeric () and (id_idx + offset) <

= id_len:

offset += 1

ascii_uid.append(int(my_uid[id_idx:id_idx + offset - 1]))

id_idx += offset - 2

else:

ascii_uid.append(ord(chr))

id_idx += 1

ascii_uid = np.array(ascii_uid)

print unity id with ASCII result

print(my_uid)

print(ascii_uid)

find the pixel count of each ASCII code

num_red = np.zeros(np.shape(ascii_uid))

num_gre = np.zeros(np.shape(ascii_uid))

num_blu = np.zeros(np.shape(ascii_uid))

chr_idx = 0

for chr in ascii_uid:

num_red[chr_idx] = int(np.sum(img[:, :, 0] == chr))

num_gre[chr_idx] = int(np.sum(img[:, :, 1] == chr))

num_blu[chr_idx] = int(np.sum(img[:, :, 2] == chr))

chr_idx += 1

print the counts

print("Number of red instances per ASCII value:")

print(num_red)

print("Number of green instances per ASCII value:")

5

ECE 558 Arpad Voros

print(num_gre)

print("Number of blue instances per ASCII value:")

print(num_blu)

create a copy of the image to paint the digital signature

ds_img = np.copy(img)

each channel , RGB

channel = [0, 1, 2]

create a binary mask to skip already painted pixels

unchecked_mask = np.ones(img_shape , dtype = bool)

find each pixel , paint the digital signature

for chr in np.unique(ascii_uid):

for chnl in channel:

for r in range(num_r):

for c in range(num_c):

if unchecked_mask[r, c, chnl] and ds_img[r, c, chnl] == chr:

r_range , c_range = get_bounds(r, c, num_r , num_c)

ds_img[r_range[:, None], c_range[None , :], chnl] = 255

unchecked_mask[r_range[:, None], c_range[None , :], chnl] =

False

save the image and display it

Image.fromarray(ds_img).save(folder_dir + my_uid + ’_signature.png’)

plt.imshow(ds_img)

plt.show()

6

